
Introduction
Mukesh Doble, Anil Kumar Kruthiventi, in Green Chemistry and Engineering, 2007
Definition of Green Chemistry
Green chemistry involves a reduction in, or elimination of, the use of hazardous substances in a chemical process or the generation of hazardous or toxic intermediates or products. This includes feedstock, reagents, solvents, products, and byproducts. It also includes the use of sustainable raw material and energy sources for this manufacturing process (Anastas and Warner, 1998; Anastas and Lankey, 2000, 2002; Anastas et al., 2001). A responsible user is also required to achieve the goals of green chemistry. The U.S. Presidential Green Chemistry Challenge, March 1995, defines green chemistry as,
the use of chemistry for source reduction or pollution prevention, the highest tier of the risk management hierarchy as described in the Pollution Prevention Act of 1990. More specifically, green chemistry is the design of chemical products and processes that are more environmentally benign.
Green and sustainable chemistry, a new concept that arose in the early 1990s, gained wider interest and support only at the turn of the millennium. Green and sustainable chemistry concerns the development of processes and technologies that result in more efficient chemical reactions that generate little waste and fewer environmental emissions than “traditional” chemical reactions do. Green chemistry encompasses all aspects and types of chemical processes that reduce negative impacts to human health and the environment relative to the current state-of-the-art practices (Graedel, 2001). By reducing or eliminating the use or generation of hazardous substances associated with a particular synthesis or process, chemists can greatly reduce risks to both human health and the environment.